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Abstract—Online commerce currently provides better cus-
tomer activity information, compared with traditional retail
stores. For instance, measuring customers’ interest on products
in shelves is a complex task in physical environments. However,
these scenarios may benefit from the Internet of Things (IoT)
technologies to obtain context-aware information hard to obtain
otherwise. For instance, in a real store, users may show their
interest in a given product depending on the time interacted with
it. We present a system designed to reliably detect user-object
interactions in an RFID-enabled context-aware shelf scenario,
with the goal to measure user activity based on the weighted
Information Gain classifier (wIG), an empirical machine learning
technique. The system is configured by means of thresholds
determining the classification accuracy, and it is automatically
adapted to different scenarios by means of an automated calibra-
tion method. Our proposed user-object interaction measurement
method achieves performance above 80% in a real environment
evaluation, indicating a high reliability. Our proposal could
be used to feed user-centric privacy-preserving recommender
systems in brick-and-mortar stores, or as aiding tool for visually
impaired users.

I. INTRODUCTION

Nowadays, more and more retailers use technology to
increase their business. The Internet of Things (IoT) tech-
nologies, where context-aware connected devices are deployed
in almost every physical scenario, are increasing worldwide
and could impact on retail scenarios’ benefits [1]. Within the
different commercially available IoT technologies, Ultra High
Frequency (UHF) Radio Frequency Identification (RFID),
defined in the Electronic Product Code Class 1 Gen2 (EPC
Gen2) [2], is de facto standard in retail. Many retailers already
attach UHF RFID tags to their products [3], to monitor stock
or speed up cash processes [4].

The RFID technology not only provides the unique iden-
tification of a given object. It also generates other relevant
information such as timestamps, localization and low-level
indicators such as Received Signal Strength Indicator (RSSI),
or radio frequency phase (PHASE). The passive RFID tags
allow physical objects to communicate in IoT scenarios, with
the raw data provided by the RFID technology being an
advantageous information to develop smart systems within
the IoT scenario. This ubiquitous computing scenario can
make use of the RFID information stream to enable Business
Intelligence by means of data mining and machine learning
techniques. We can envision a person shopping, receiving
additional information in her smartphone about a product
(without the need of revealing personal data) by only taking

it from the shelf. Furthermore, sellers could benefit from the
information about all the user-object interactions taking place
within the store if presented in a comprehensive way for them.

The overall goal is to improve user’s shopping experience
by reliably detecting in real time user-object interaction in an
unassisted manner, uniquely by means of RFID information.
Specifically, we achieve the following contributions:

• An empirical supervised classification technique designed
to measure user-object interactions in a physical scenario

• An autonomous calibration method to provide real-time
ground truth feedback to the user-object interaction clas-
sification system

• An scalable and low-cost prototype of our proposed
system, equipped with off-the-shelf IoT equipment

The remainder of this paper is organized as follows: Section
II details the problem motivation and the related state of
the art. The RFID-based interaction detection principle is
described in Section III, and Section IV presents our proposed
wIG classifier for a context-aware shelf to detect user-object
interactions. We empirically evaluate the wIG algorithm in
Section V. Finally, the paper is concluded in Section VI, also
pointing out future work directions.

II. RELATED WORK

Customer related data are gaining more and more impor-
tance for retailers to drive their business even more consumer
oriented [5]. Indeed, extracting information about user’s online
browsing (web analytics) is a multi-billion dollar business
today [6]. However, still most purchases occur in physical
spaces, and in these scenarios, loyalty programs are the main
source of customer satisfaction data. Unfortunately, these
programs do not give information about the shopping process
which would be of utmost importance to improve customer
satisfaction. Thus, one challenge that needs to be addressed
is how to extract data from the shopping process in physical
stores in a privacy-preserving manner.

With this objective in mind, the first problem that needs
to be solved is the detection of user-object interaction (also
referred as user-product interaction in the retail context). This
is a well known research area in fields such as computer
vision. However, computer vision approaches have important
drawbacks, being the implementation complexity, and the
difficulty to differentiate similar objects, the most important
ones. In recent years, ubiquitous computing technologies such
as IoT, and more specifically RFID, have been introduced



to try to address this issue. However, RFID is usually used
as a simple identification platform, while activity information
is extracted from battery enabled sensors [7] (accelerometer,
gyroscope, etc.) or computer vision [8].

RFID data as the main source for information extraction is
also present in the literature. [9] presents an interesting work
on extracting users’ interest from book-browsing behaviors
recorded with RFID. Unfortunately, they focus on the books’
keyword extraction and classification and the RFID system is
not detailed. Furthermore, the system judges a book has got
picked up from the shelf only if the book is taken farther
from the shelf than 50 cm. A wine recommendation system
is described in [10] where RFID is also implemented. In
[11] and [12] the false positive reads problem is explored,
statistically analyzing whether reading patterns from different
objects and antennas comply with predefined retail operations.
Huiting et al. exploit phase measurements of EPC Gen2 tags
for localization and movement detection [13]. Keller et al. [14]
propose a machine learning based approach that makes use of
the low-level RFID reader data to detect false positive reads
in a scenario with static labeled objects such as a factory or a
distribution center. Finally, Li et al. propose in [15] a method
to detect gesture recognition based on UHF RFID.

Opposite to [8] and [7], our approach to analyze user-
object interaction is based on RFID measurements and the
ground truth provided by sensors, which simplifies and reduces
its cost in a real implementation. Besides the actual high-
level inventory information, we use multiple low-level RFID
indicators such as received signal strength indicator (RSSI)
and RF Phase (PHASE) to improve resolution on the user-
object interaction. Our approach differs to Weiss-Ferreira-
Chaves et al. [11] and and Keller et al. [14], which classify
based on single indicators and static tags, while this paper
applies similar and improved principles to the retail space in
order to detect dynamic tag movements indicating consumer-
object interaction.

III. RFID-BASED INTERACTION DETECTION PRINCIPLE

In this section, we describe our approach on detecting user-
object interaction in an unassisted and scalable IoT scenario.
Based on [16] work, where the basic classification principle
is described, we present a low-cost and deviceless (from
the user perspective) user-object interaction detection method
allowing better scalability and improved classification metrics.
By means of RFID and sensors, the system is automatically
trained enabling unassisted supervised classification. That is,
with the regular user-object interactions performed by cos-
tumers or employees.

A. Using RFID Indicators to Reason Interaction

EPC Gen2 is a low-cost Ultra High Frequency RFID tech-
nology. Labels are the largest element within the RFID system,
since there are much more labels than readers or antennas.
Hence, EPC Gen2 is considered low-cost RFID because the
labels’ cost is usually below 5 cents of Euro. EPC Gen2 tagged
objects are constantly interrogated by the antennas of an RFID

system on a time-multiplexed basis. That is, each antenna
interrogates the tag population in its area during a reading
time, after which the next antenna repeats the same procedure.
Typical reading times are about a hundred to few hundreds
of milliseconds. Since the interrogator emits electromagnetic
signals to all reachable passive RFID tags, those backscatter
with their ID and other information such as RF indicators
and timestamp. Each tag sample obtained by a state-of-the-art
commercial RFID system is composed of high and low-level
RFID indicators, the following being the most relevant:

• High-level indicators
– Identification code (96-bit typically)
– Timestamp
– Antenna port
– Reader identifier

• Low-level indicators
– Received signal strength indicator (RSSI)
– Radio frequency phase (PHASE)

The high-level indicators uniquely identify an object within
the object population, besides providing an implicit timestamp
for each sample. The low-level indicators provide an approx-
imated measure of the radio frequency signal in the tags as
measured by the RFID antenna. The RSSI is modeled by the
two-way radar equation for a monostatic transmitter, while the
PHASE is approximated by the combination of the round trip
distance between the reader’s antenna and the tag, plus the
phase rotation introduced in the transmission, reception and at
the tag itself [17].

The intuition behind the user-object interaction detection
is given by a variation on the low-level RFID indicators.
Detecting weaker RSSI samples imply a longer coarse grained
distance between tag and antenna, while PHASE variance may
detect fine-grained changes in the tag position (see [13] for
more details on UHF RFID PHASE extraction). Opposite, a
static tag returns stable low-level measurements.

B. Data pre-processing into features

As first step in our method, the indicators described above
are used to model a set of ten high-level features whose goal
is to describe variations in the tag position (i.e. interactions
with users). Table I describes the features used in our method.

Modeling tag-position variations is achieved by combining
three groups of features including raw values as returned by the
RFID system (1, 2, 3), difference of consecutive values (4,5),
and statistical measures of samples sets during n read times
depending on the number of antennas used in the RFID system
(6 to 10). Figure 1 depicts four features examples obtained
by different RFID antennas, of about 200 seconds length at
different temporal windows. In each example, one or more
interactions with different lengths are recorded for a single
labeled object. Solid points represent interaction samples and
empty points represent samples where the object was static
and remained at the same place. Notice that a few errors are
recorded due to sensors misbehavior.



C. Scalable and automated ground truth extraction

The interaction features mentioned above are mainly based
on radio frequency indicators, and thus, strongly influenced by
the physical environment. Hence, the feature’s actual values
may significantly vary with the environment (i.e. the shelf
material, tag-antenna distance, electromagnetic interference,
etc.). To overcome this issue, we propose to collect ground
truth from a subset of tags using sensors, to improve learning
on the actual activity in a given scenario. Looking for a simple
solution to keep low complexity and cost of the system (for
the sake of implementability in a real scenario) we propose
the utilization of simple sensors like Light Dependent Resis-
tor (LDRs), or infrared proximity LEDs, behind the labeled
objects. A threshold, then, determines the object’s state. For
instance, if a LDR does not receive light, it is assumed that
the object remains static. Opposite, if the sensor receives light,
it is considered that the object has been taken off the shelf.

Despite the reliability of this ground truth method, only
a binary presence/absence state is obtained. However, the
RFID features return a richer information set on the labeled
objects activity since they can be tracked even on users’ hands.
Notice that to train the system, it is not necessary to get
ground truth information from all the objects, but a number
of them to allow supervised training. The collected ground
truth information is only used in our proposed method to
train in real time a classifier fed by the RFID-based features.
Although the LDR sensors detect objects presence or absence,
those cannot identify the interacted object. However, the RFID
system identifies each labeled object regardless of its relative
position with regard of the antennas.

D. Data Calibration

The LDR sensors are used in our system to automatically
calibrate the RFID samples recorded by the antennas. If
all LDRs receive light, the system assumes all objects are
present in the shelf. The opposite state is recorded during

TABLE I
SUMMARY OF THE THREE GROUPS OF FEATURES MODELING

INTERACTION BASED ON RFID DATA.

1 - RSSI: Reader’s measurement of the backscattered power from the tag.
2 - PHASE: Reader’s measurement of the phase rotation from the tag.
3 - READ COUNT: Number of samples from a same tag within a single
read time.

4 - RSSI DIFF: Absolute value of the difference of a given RSSI value
and the previous sample.
5 - PHASE DIFF: Absolute value of the difference of a given RF Phase
value and the previous sample.

6 - RSSI MEAN: Mean of RSSI samples within n read times
7 - RSSI STD: Standard deviation of RSSI samples within n read times
8 - PHASE MEAN: Circular average of PHASE within n read times
9 - PHASE STD: Circular standard deviation of RF Phase samples within
n read times
10 - READ TAG/ANTENNA: The number of antennas detecting a single
tag within n read times
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Fig. 1. RFID indicators like RSSI and Phase may describe object movement,
which can be inferred as interaction with persons. Interaction and static
samples in this figure are automatically determined by an LDR sensor.

interactions. The procedure of interaction is done as occurs
regularly. A costumer takes a tagged-item from the RFID-
enabled shelf, and holds it up during an unspecified amount
of time ranging from one second to more than one minute.
After the interaction, the customer optionally can return the
tagged item back to the shelf. During the interaction time
the tagged-item is still sampled by the RFID system but an
LDR is receiving light, thus, recording an interaction. Based
on this behavior, all samples are labeled as static or interacted,
allowing the data calibration.

Calibration time depends on the classification method and
samples distribution. Nevertheless, once an interaction is per-
formed, the system is able to run. The larger the number of
interacted samples, the better the classification metrics.

IV. WIG ALGORITHM PRINCIPLE

We propose an empirical supervised machine learning tech-
nique, the weighted Information Gain classifier (wIG). It has
been developed in order to solve the problem of automatically
detecting user-object interactions in an RFID-enabled context-
aware shelf scenario. The wIG algorithm is based on the



Information Gain (IG) algorithm [18] also known as the
Kullback-Leibler divergence. Opposite to standard machine
learning techniques like Support Vector Classifier, Random
Forest (tree-based) or Logistic Regression, the wIG algorithm
is empirically designed to fit in a context-aware RFID-enabled
shelf scenario. Readers interested into further details on wIG
comparison with standard state-of-the-art machine learning
techniques can refer to [19].

A. Information Gain Algorithm

We propose a classification method which predicts two
event types, static or interaction. Our system collects RFID-
based data from user-object interactions and by implementing
LDR sensors as a ground truth, samples can be classified.
Our proposal is based on the Kullback-Leibler divergence
(or Information Gain) [18]. It measures how distant two
probability distributions are, or in our case, how well two event
types can be separated depending on a specific threshold:

IG(t, f) = H(t)−
[
|t ≤ θ|
|t|

H(t ≤ θ) + |t ≥ θ|
|t|

H(t ≥ θ)
]

The above equation formulates the Information Gain (IG)
where H defines the samples entropy for samples t; θ defines
the thresholds used for classification, and features are repre-
sented as f .

Our proposed method is based on a preliminary model
described in [16] where the authors fitted their approach by
using the mentioned Kullback-Leibler divergence to classify
the two event types as static or interacted tagged-object and
applying a Bayesian Noisy-OR Network to reason interaction.
Opposite to Melià-Seguı́ and Pous work, the ground truth
in our approach, necessary for enable supervised learning, is
obtained through automated LDR sensors sampling.

B. Classification’s procedure

The basic wIG classification principle is based on applying
the IG algorithm to each set of tag-features-antenna samples.
The classifier starts without any information (cold start). Once
the RFID reader initiates the identification rounds, all tags
within the reading range will send data to the reader, through
the reader antennas. That is, each tag response is sampled by
one specific antenna. These data is organized into features
in the information systems (IS) back-end. Additionally, a
number of LDR sensors continuously sample the objects
presence/absence, providing groundtruth data. Finally, the IS
merges and calibrates by means of timestamps both infor-
mation sources, allowing the classifier to perform supervised
learning by applying 10-fold cross validation on the obtained
data samples.

Once the IS begins to receive both static and interacted
samples, the system generates an IG value for each set of
tag-feature-antenna. The larger the IG value for that set of
samples, the better the classification, based on a threshold θ.
The wIG classifier then filters the results based on two thresh-
olds defining the minimum IG values to consider a correct

classification, and the minimum number of features returning
correct classifications. The Equation below summarizes wIG’s
operation.

wIG(al, tm, fn) = max
θn
{IG(tm|al, fn)}

The wIG’s goal is to provide classification fine tuning.
Better classification is achieved at the expense of considering
only those set of samples with higher IG values, with the
associated risk of losing actual interactions. By decreasing
the thresholds, more interactions can be detected with lower
classification metrics. The novelty of the proposed approach
consists on the empirical modification of the IG algorithm,
using tuning thresholds, to the specific problem of detecting
user-object interactions in a context-aware shelf scenario.

V. WIG IMPLEMENTATION AND EVALUATION

A. Weighted Information Gain Metrics

The wIG user-object interaction measurement algorithm
relies on its configuration parameters to enable a fine-grained
classification. Specifically, two thresholds can be set up to
control the granularity of the classification:

• Maximum Information Gain threshold (0-0.5): The
maximum IG threshold defines the classification quality,
since samples with lower IG (that is, less entropy) from
the threshold would be discarded.

• Features threshold (0-1): It establishes the minimum
amount of features to consider a valid interaction mea-
surement.

By tuning these two thresholds, the system can be better
adapted to each specific working scenario. These threshold are
user configurable, or self-calibrated by the system when the
metrics measurements decrease. Since the thresholds’ values
affect the performance of the system, it provides the possibility
of deciding between a more restrictive configuration (higher
thresholds) or a more permissible one. On one hand, a re-
strictive configuration will provide a lower percentage of well
classified samples, increasing the accurateness but decreasing
the sensibility (recall). On the other hand, a permissible
configuration will consider samples with low entropy, thus,
decreasing the classification accuracy.

The wIG classifier can be implemented in a variety of
scenarios. We integrated wIG into an RFID-enabled context-
aware shelf tracking labeled books, using off-the-shelf RFID
devices, with the goal to track users interacting with the books.
In this section, we describe our implementation based on the
RFID-enabled context-aware shelf, we give details on empir-
ical experiments with users, and evaluate wIG classification
metrics and thresholds.

B. Context-aware Shelf Prototype using wIG method

We implemented wIG on an RFID-enabled context-aware
shelf, to empirically evaluate our user-object interaction detec-
tion system. Figure 2 depicts a general overview diagram of
the system. An external display connected to the information
system back-end can then be used to provide feedback to
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Fig. 2. Elements participating in the user-object interaction detection system.

the user (i.e. additional information on the interacted object).
The context-aware shelf uses commercial off-the-shelf RFID
equipment.

Figure 3 shows a user evaluating our proposed user-object
interaction system. The user-object interaction devices are
placed within a regular shelf. The system is composed of
four RFID antennas behind the prototype, a number of books
with an RFID label attach on the back of them. Each RFID
antenna polls for RFID tags each approximately 250 ms
(200 ms of read time + 50 ms of processing) obtaining four
samples per second. An LDR placed between the structure
and the book (red-straight arrow on Figure 3) provides the
ground truth where an Arduino board collects the given signal.
Data from both RFID and Arduino system are generated
separately, and processed afterwards by a computer to generate
a single dataset. The dataset evaluated in this section has been
generated by the samples collected from an experiment of 20
minutes length carried out in a laboratory by volunteer users,
who were we asked to interact with the tagged-books freely.
The dataset result is composed by 1/3 of interacted samples
by 2/3 of samples with no interaction as occur in real store.

We evaluate our proposal by using standard metrics Preci-
sion, Recall, F-Score and Accuracy. In terms of user-object
interaction, those can be defined as:

• Precision: Measures the percentage of samples correctly
classified by the wIG classifier between all samples
classified as interaction by the ground truth.

• Recall: Measures the percentage of samples correctly
classified by the wIG classifier between those samples
which were or not well classified but the LDR sensor
detected as interaction. This measure indicates the reli-
ability of the user-object interaction system by avoiding
false positive alarms.

Fig. 3. Example of object being interacted by a user, and other static objects
on the shelf.

• F-Score: Measures the harmonic mean from Precision
and Recall. It provides information about the correctness
from both metrics.

• Accuracy: Measures the percentage of samples classified
correctly out of all samples.

C. Threshold Evaluation

Figure 4 shows four plots corresponding to each of the
four metrics measurements Precision, Recall, F-Score and
Accuracy. The y-axis represents the maximum IG threshold,
and the x-axis define the percentage of features fitting the wIG
threshold. The values of maximum IG threshold varies from 0
and 0.5 while the features threshold varies from 0 and 1. The
darker the gray color the better the measure. The optimal point
occurs with a maximum IG threshold of 0.34 and a feature
threshold of 0.4. Notice that the higher the thresholds are,
more restrictive the system is. Nevertheless, higher thresholds
allow a better classification.
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Fig. 4. Classification metrics. Optimal thresholds

The empirical results shown in this work depend on the
features utilization (cf. Table I). In the experiments described
in this work the features achieving better IGs, that is, better
classifying user-object interactions, are RSSI, RSSI MEAN,
RSSI DIFF, RSSI STD, PHASE DIFF, PHASE MEAN and
PHASE. A deeper analysis on features is out of the scope of
this paper, and is considered for future work.

D. wIG Algorithm Evaluation

In this section we compare the wIG algorithm with the
basic IG used in [16], and a Baseline algorithm based on
absence/presence of the objects. We compared the evaluation
of the four metrics measurements explained above: Precision,

TABLE II
SUMMARY OF THE PARAMETERS USED IN THE EXPERIMENTAL SETUP.

Parameter Value

RFID Standard EPC Gen2 [2] & ISO 18,000 6C [20]

Max tag read throughput 400 tags/s

Tx Power 31.5 dBm

Sensitivity -80 dBm

Q value Dynamic

Read time 200 ms + 50 ms processing

Antenna Beamwidth ∼100 degree

Antenna Gain 3.2 dBi

Passive RFID Tag IC NXP U-Code G2iL

Sensors 4 LDRs

Embedded computer Arduino board

Precision Recall F−Score Accuracy

Classification metrics

0.
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8
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0

IG wIG Baseline

Fig. 5. Comparison of the classification metrics between the original IG,
wIG, and a Baseline . The wIG algorithm achieves better results than the
other techniques.

Recall, F-Score and Accuracy. We have used the same dataset
as detailed in section V-B composed by 4000 samples.

Figure 5 shows the evaluation results. We can observe how
the wIG algorithm performs better than the other techniques
in all the described metric measurements. The wIG algorithm
Precision is higher (78.5%) than IG (53.5%) and Baseline
(20.2%). The reliability of the system (Recall) is similar in
the case of wIG (92.2%) and IG (89.8%), with both achieving
excellent performance. The F-Score represents the weighted
harmonic mean from Precision and Recall measurements, thus,
the wIG algorithm achieves better metrics with an 84.2% while
IG and Baseline obtain 67.1% and 26.2% respectively. Finally,
the wIG algorithm obtains an Accuracy of (82.4%), over 20%
compared with the other algorithms tested.

In conclusion, the wIG’s better precision (detecting actual
user-object interactions) improves the overall metrics com-
pared with the basic IG algorithm, and Baseline methods.
Furthermore, our classification approach performs over other
standard state-of-the-art machine learning classifiers as de-
scribed in Parada et al. [19].

VI. CONCLUSION & FUTURE WORK

Online commerce is a step ahead in tailoring the user
interests and needs thanks to the easiness of web browsing
tracking. Obtaining similar information in brick-and-mortar
stores is a hard and expensive task if performed manually or
using vision-related techniques.

We propose the utilization of RFID-enabled context-aware
shelf to provide additional information on users’ interest in
physical spaces. The wIG interaction detection system is
an empirical, low-cost, and scalable user-object interaction
classifier relying on the well known EPC Gen2 RFID standard.
The classifier is autonomously trained to calibrate and improve
classification. We have empirically evaluated our proposal
with commercial off-the-shelf RFID equipment, achieving
performance over 80%, improving state-of-the-art methods.

We envision a real store where users’ interests and prefer-
ences are used in a privacy-preserving manner for the benefit
of both users and retailers, as online commerce services
do. The wIG algorithm could be used, together with RFID-
enabled shelves, to collect user interests, feed real-time user-



centric recommendation systems, independent context-aware
shelf navigation for visually impaired users, and many other
applications.

We plan to extend and improve the wIG interaction detec-
tion system. Our future work includes, but is not limited to:

• Extend the number of antennas and tagged-objects for
large-scale experimentation

• Experiment with different objects to evaluate the effect
of size, shape, material, etc.

• Use channel information to improve features based on
PHASE

• Evaluation and improvement of features’ contribution.
• Implement a real time visualization providing products’

information, recommendations, etc.
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