


analysis, with preprocessing techniques to generate meaningful
higher level events. In this work RFID is only used for
identification purposes. A middleware to integrate sensors and
identification data has been recently proposed in [11].

RFID data as the main source for information extraction
is also present in the literature. In [12] and [13] the false
positive reads problem is explored, statistically analyzing
whether reading patterns from different objects and antennas
comply with predefined retail operations. Huiting et al. exploit
phase measurements of EPC Gen2 tags for localization and
movement detection [14]. Finally, Keller et al. [15] propose
a machine learning based approach that makes use of the
low-level RFID reader data to detect false positive reads in
a scenario with static labeled objects such as a factory or
a distribution center. Finally, Kriara et al. propose in [16] a
method to detect gesture recognition based on HF RFID.

Opposite to [9] and [10], our approach to analyze human-
object interaction is only based on RFID measurements, which
simplifies and reduces its cost in a real implementation. Be-
sides the actual high-level inventory information, we use mul-
tiple low-level RFID features such as received signal strength
indicator (RSSI) and RF Phase (RFP) to improve resolution
on the human-object interaction. Our approach differs to single
features utilization as in [12] and [15]. However, we follow a
similar approach as [15] to select relevant features from which
to extract meaningful activity information.

III. RFID-ENABLED SMART SHELF

Next, the main characteristics of UHF EPC Gen2 RFID per-
formance are described. The integration of this technology in
commercial shelves, using time-multiplexed antennas, allows
to further detect interaction of humans with objects.

A. Items Identification Using UHF EPC Gen2 RFID
EPC Gen2 is a low-cost passive RFID technology perform-

ing on the UHF band. It is mainly composed by a reader and
antenna (also named interrogator), one to several tags (also
named electronic labels) and an information systems back-end.
It works following the Interrogator-Talks-First basis, where the
reader provides energy to the tags through RF waves, and also
sends interrogation commands to which the tags answer. The
identification process can be divided in three operations. On
a first stage, the reader looks for how many tags are in its
communication range based on an Aloha-like Medium Access
Control (MAC) protocol [3]. This stage is called the Select
operation. On a second stage the reader individually identifies
all tags in the field, what is known as the Inventory operation.
Finally, if the reader wants to modify the tag’s memory or
access the tag’s reserved memory, the Access operation is
performed.

The time to inventory the items in UHF RFID depends on
the number of tagged items, the environmental RF properties
and the reader configuration. The larger the number of tags,
the slower the Select stage. However, EPC Gen2 is designed
to identify large populations of tags, being able to identify
hundreds of tags per second [3]. The RF environment affects

(a) (b)
Fig. 1. Smart shelf back view with 32 antennas (a), and front view with
books and UHF EPC Gen2 electronic label detail (b).

the EPC Gen2 performance, since the signal codification and
collisions can delay the communication. Finally, depending
on the number of tags to be identified, the RFID reader read
time can be adjusted to speed up the inventorying process,
being the typical read time in the range of a few hundreds of
milliseconds for common real scenarios.

The above mentioned parameters affect the inventorying
time, for a single-antenna reader. Next, we discuss the im-
plications of using multiple antennas.

B. Antenna Multiplexation
The aim of a smart shelf is to track the objects placed

on it, to obtain real-time information about a store’s stock.
Figure 1(a) shows a typical smart shelf implementation, mea-
suring about 2 m height and 1 m width. There exists two main
options to cover with RFID signal all the smart shelf: using a
single reader/antenna covering the whole smart shelf, or using
more antennas placed along all of the smart shelf surface.

The first option, although simpler in terms of implemen-
tation, is not able to retrieve relevant information for the
store such as the location of objects. Implementing different
single-antenna readers in a smart shelf quickly increases the
cost, besides provoking RF interferences because of the dense
reader environment (RF channels management in a reduced
area) [3]. The current approach to solve this issue is antenna-
multiplexing using a single reader.

With antenna multiplexing, the RF channel is time multi-
plexed along different antennas, that is, each antenna from a
single reader performs an identification process sequentially.
Antenna multiplexing provides spatial resolution, also lower-
ing the implementation cost. Nevertheless, antenna multiplex-
ing adds some temporal uncertainty due to the time it takes to
cycle through all of the antennas. Since only one antenna can
be active simultaneously for t seconds, the time gap without
signal for an antenna increases to t(n − 1) seconds, where
n is the number of multiplexed antennas. This represents a
drawback for the detection of human-object interaction on a
smart shelf. Since most of the time the antennas are inactive,
the system can miss interactions on the smart shelf. However,
dividing the identification space reduces the number of objects
to inventory per antenna, allowing short read times, and thus,



fast multiplexing. Next, we propose a novel method to infer
human-object interactions on a RFID smart shelf, overcoming
the antenna-multiplexing issue.

IV. HUMAN-OBJECT INTERACTION USING RFID

We define an interaction as a customer taking an item off
the shelf, and eventually returning the item to the shelf. In
this section we describe the RFID high and low-level features
analysis to model human-object interaction on a smart shelf,
using standard UHF EPC Gen2 RFID technology.

A. High and Low-level RFID Features
High-level RFID information typically includes the 96-bit

identification code, a time stamp, a read count (the number of
times a tag has been read in a reading cycle), and an identifier
of which antenna detected the tag. The 96-bit identification
code is implicit to the inventoried object, and the time stamp
is implicit to each measured sample. In the smart shelf
scenario the read time is adjusted to the minimum allowing
the identification of all objects (cf. Section III), giving the read
count a typical value of one. The next high-level feature we
consider is what antenna detects each tag. Since the antennas
are slightly directive (∼100◦ beamwidth), this feature brings
an approximate location of the object. Due to the antennas’
radiation pattern, a tag close to the smart shelf (i.e. close to
the antennas) will be inventoried typically by one antenna. On
the contrary, if the tag moves away from the smart shelf it
may be detected by more antennas (up to n).

Besides these high-level RFID parameters, most commer-
cial readers offer the capability of sensing low-level RFID
information, such as the RSSI or RFP. The RSSI is modeled
by the two-way radar equation for a monostatic transmitter.
The reader provides an approximate RFP value which is a
combination of the roundtrip distance between the reader’s
antenna and the tag, plus the phase rotation introduced in
transmission, reception, and at the tag itself.

Figure 2 depicts the RSSI and RFP information from a
tagged object, placed on a four-antenna smart shelf, for about
ten minutes. During that time, a human-object interaction is
produced. The interaction event in this example is denoted by
two vertical dashed lines. The tag backscatters the reader’s
signal, which is received by the reader at around -40 dBm if
the object is placed on the shelf (thus, close to an antenna),
and drops under -60 dBm if the object is on customer’s hand.
During interaction, the RFP rotates up to 60◦.

The smart shelf will inventory the RFID tag population
also obtaining the low-level information aforementioned. Both
RSSI and RFP are indicators of the relative distance of the
object to the antennas. Similarly to [15], besides considering
the values as measured by the reader in each sample (α),
we also use the absolute difference |∆α| values of each
sample with its predecessor from the same antenna, to obtain
a sense of the object’s movement. For instance, an object
can be slightly moved reporting a similar RSSI, but a high
RFP difference. Hence, both low-level measurements add
information to the system.

B. Interaction Modeling and Reasoning

A simplistic baseline method to detect interaction using
RFID is to track the presence/absence of identification for each
specific tag on the shelves. However, this method presents
a main drawback that makes it unreliable despite of its
simplicity: a tag can still be inventoried even on customer’s
hands, hence, missing the interaction.

In the proposed scenario, for each inventory round r, n
antennas J = {j1 : jn} are sequentially activated t seconds,
eventually returning samples S with timestamp p from the
tag population K = {k1 : km}. We propose to detect the
human-object interaction using a combination of low-level
and high-level RFID events. For both RSSI and RFP, we
consider the raw value (α) as received from the reader, and the
absolute difference with its predecessor from the same antenna
(|∆αr−1:r,j |). The number of antennas (#Ant) detecting the
same tag is the high-level RFID event considered in the
analysis. Since the inventory process uses sequential-antenna
measurements, it is not possible to simultaneously detect the
tags from different antennas. Hence, we should consider the
number of different antennas identifying an object within some
period to the current sample. Equation 1 defines the samples
format, where {x1 : x5} are the five high and low-level RFID
events obtained from the reader as features.

Sk
r,j,p = {x1 : x5} (1)

Using supervised machine learning techniques, the above
features are obtained to model a Bayesian Network. First,
we classify the feature values into interacted or static objects
using Information Gain analysis [17]. It can be interpreted as
a measure of how well the two tag types can be separated
using a specific value as threshold [15]. Second, we apply
this supervised learning to a Bayesian Noisy-OR Network
[18] to infer interaction. Equation 2 details the Noisy-OR
model where y denotes interaction, X �

i ∈ X is a subset of
the z features described in Equation 1 better classifying the
interaction, λ0 is the leak probability [18], and λi are the
interaction probabilities associated to each feature X �

i .

P (y|X �
i) = 1−

�
(1− λ0)

z�

i=1

(1− λi)

�
(2)

Each of these features become a parent in the noisy-
OR model. We select the Noisy-OR network due to the
independence of causal influence of the selected parameters
generating an interaction, and the implicit noise addition in the
passive RFID measurements, besides its simplicity for large-
scale deployments. Thus, the combined influence of the smart
shelf measurements return an interaction probability P (y|X �

i)
conditioned by the aforementioned features.

V. EXPERIMENTAL SETUP AND RESULTS

Next, we detail the experimental setup used to validate the
theoretic model described in Section IV-B, and the empirical
results obtained from our experiments. The RFID devices used
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Fig. 2. The human-object interaction can be disclosed observing the RSSI and RFP parameters from multiple antennas. In this plot the vertical dashed lines
denote the actual interaction time gap.

in this research are the Advantenna-P11 and the AdvanReader-
100 [19] (using the M6e 4-port UHF RFID module [20]),
compatible with EPC Gen2 [3] with ETSI regulations (Euro-
pean region [21]). The reader transmits 31.5 dBm power, with
a receiving sensibility of -80 dBm. RFP is measured modulo
180 (due to modulation constraints). The RFID tags used in
this research are the AK UHF tags [22], depicted in Figure
1(b), although any commercial tag could be used.

A. Experimental Setup
To validate our human-object interaction model we de-

ployed a real Smart Shelf with labeled objects (cf. Figure 1),
in a laboratory emulating a real scenario with a single reader
to avoid the dense reader environment [3]. One of the shelves
was inventoried by a row of four antennas (n = 4), connected
to the RFID commercial equipment described above (Section
V). The RFID reader used in our experiment can inventory up
to 400 tags per second [19]. For the sake of simplicity in the
experiment, five tagged books {k1 : k5} were placed on the
shelf. We requested volunteers to take the RFID labeled books
from the shelf as they would do in a book store (i.e. take a look
at the book). The interaction time for each book was recorded
to be used as ground truth data to enable supervised learning.
An example of these interactions is shown in Figure 2.

The RFID reader used in our experiment can reliably
inventory this tag population in t = 200ms, plus approx-

imately 50 ms for processing antenna switching. Since four
antennas were used, an inventory round r was completed in
approximately one second, being a reasonable time to measure
an interaction. We used the same time period to accumulate
the number of antennas #Antr,j−3:j measuring a tag k. A
summary of the experimental setup is described in Table I.

The reader was configured with one sequential multiplex-
ing level, and monostatic configuration (each single antenna

TABLE I
SUMMARY OF THE EXPERIMENTAL SETUP RFID PARAMETERS.

Parameter Value

RFID Standard EPC Gen2 [3] with ETSI regulations [21]
Reader AdvanReader-100 [19] (with M6e module [20])
Tx Power 31.5 dBm
Sensitivity -80 dBm
Inventory Sequential
Q value Dynamic
Read time 200 ms + 50 ms processing

Antennas 4 Advantenna-P11 [19]
Directivity ∼100 degree
Gain 3.2 dBi



transmits the RFID commands and receives the responses).
Phase ambiguity due to channel selection in ETSI regulation
[21] (∼ 7◦) was ignored since its effect was not significant.
However, it may be considered for other regions [14]. Ten
interactions were performed at regular intervals on the objects.
A dataset containing about 20,000 samples (spanning 20
minutes of inventorying time) were used for training and
evaluation using 10-fold cross-validation.

B. Empirical Results

Table II summarizes the measured RFID features from
the supervised learning classification analysis based on In-
formation Gain. Each evaluated feature returns the samples
measurement range, the optimal classification threshold as
defined by the maximum Information Gain value, the max-
imum Information Gain value, and its individual classification
accuracy (λi) in either interaction or non-interaction samples.
Results return better performance from the RSSI feature (x1)
and the absolute RFP difference (x4) within the low-level
features tested. The high-level number of antennas (x5) also
returns good performance. Figure 3 depicts the distribution
and Information Gain analysis of the three best features being
used to model the Noisy-OR network.

To evaluate the performance metrics of our proposed
method, different analysis methods have been compared:
presence/absence (p/a) inventory detection baseline, single-
feature (e.g. RSSI monitoring) baselines, pair-wise models,
and the proposed Noisy-OR network model (cf. Section IV-B).
All baselines use one second as interaction time, for better
comparison with the proposed model.

The evaluation metrics measure how well interactions are
classified from within all measured samples. True Positives
are assigned when correctly detecting an interacted sample,
and True Negatives are assigned to actual static samples
(i.e. objects not being interacted). False Positives and False
Negatives happen when incorrectly classifying either labels.
The above measurements generate the following evaluation
metrics:

• Precision: Measures the fraction of actual interactions
with respect to all measurements detected as interactions.

• Recall: Measures the fraction of actual interactions with
respect to all actual interactions (whether these samples

TABLE II
SUMMARY OF INFORMATION GAIN ANALYSIS ON THE FIVE RFID

PARAMETERS PROVIDED BY THE SMART SHELF (RSSI UNIT IS dBm AND
RFP UNIT IS DEGREE)

Parameter Range Threshold max(IG) λi

x1: RSSI -76:-36 -54 0.26 0.78
x2: |∆RSSI| 0:27 9 0.03 0.43
x3: RFP 0:177 168 0.04 0.50
x4: |∆RFP| 0:84 18 0.14 0.64
x5: #Ant 1:4 3 0.13 0.74

x1: RSSI [dBm]
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Fig. 3. Classification thresholds for each feature are obtained from Informa-
tion Gain analysis.

were correctly classified or not). From all metrics this
is the most relevant in a context-aware scenario since it
measures how reliable is the interaction detection.

• F-Score: Measures the weighted harmonic mean of Pre-
cision and Recall, returning a measure of the correctness
of both metrics together, being also a good evaluation
metric for the correctness of the system.

• Accuracy: Measures the fraction of correctly classified
samples out of the total amount of samples. In our
scenario the number of True Negatives is larger than
the rest of samples (interaction time in retail is usually
smaller than static time), thus, we scale this measure in
accordance with the number of samples.

Table III shows the performance results from the evalu-
ated baselines and methods. We can observe that the pres-
ence/absence baseline performance is very poor. Single-feature
baselines perform better than presence/absence, with spe-
cial mention to RSSI raw value (x1). The proposed three-
features model (x1,4,5) provides the best overall classification
metrics (F-Score = 84.1% and Accuracy = 81.6%), due to
its correctness on detecting actual interactions within the
samples (Recall). Actually, the proposed three-features model
(x1,4,5) improves the detection of actual interactions by 7%
over mesuring RSSI alone. Correctly classifying interactions
within all detected interactions (Precision) is better modeled
by ignoring RSSI from the model (pair-wise x4,5). Never-
theless, human-object interaction modeling is better described
by Recall metrics (97.1% in our experiments), since reliably
detecting an actual interaction in a real retail scenario can lead
to much more accurate decisions in smart environments [8],
like placing a targeted advertisement on time, or suggesting a
recommendation through the users’ smartphone.



TABLE III
THE PROPOSED MODEL PROVIDES THE BEST OVERALL CLASSIFICATION

FOR THE HUMAN-OBJECT INTERACTIONS

Method Precision Recall F-Score Accuracy

Baseline (p/a) 0.032 0.060 0.042 0.319

Baseline x1 0.740 0.901 0.813 0.792
Baseline x4 0.837 0.242 0.375 0.597
Baseline x5 0.851 0.565 0.683 0.737

Pair-wise x1,4 0.738 0.925 0.821 0.798
Pair-wise x4,5 0.857 0.650 0.739 0.771
Pair-wise x1,5 0.723 0.972 0.829 0.799

Our model x1,4,5 0.742 0.972 0.841 0.817

VI. CONCLUSION AND FUTURE WORK

Context-aware Internet of Things (IoT) is opening new ways
to enhance operations and user satisfaction in pervasive and
smart environments. Radio Frequency Identification (RFID)-
enabled shelves are an example of these pervasive technologies
in industrial retail. We presented a novel method to detect real-
time human-object interaction, modeled by a combination of
three RFID features. By means of machine learning techniques
and following a probabilistic approach, we defined for the
first time a model for classifying human-object interaction by
only using standard EPC Gen2 RFID technology with time-
multiplexed antennas. Empirical results of our human-object
interaction detection model achieve 84.1% performance in a
real environment.

The aim of our proposed method is to serve as the basis for
further context-aware applications to connect human activity
in physical smart spaces to online applications. Our experience
with this work has enlightened us to a number of ideas:

• To improve the model by adding new features or refin-
ing the existing ones. For instance, assigning different
weights to samples from each antenna, which can im-
prove the accuracy of interaction.

• To test or adapt the model features with a larger set
of antennas, also considering phase ambiguity due to
channel selection or frequency-hopping spread spectrum.

• To experiment with multi-platform IoT. Contextual in-
telligence applications like coupons or recommendations
delivery in a smartphone application, driven by human-
object interaction detection in a brick-and-mortar smart
environment.
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